Programming Quantum Computers
(Introduction)

Moez A. AbdelGawad

moez@{cs.rice.edu, alexu.edu.eg, srtacity.sci.eg}

Sat., Oct. 19th, 2019

OREILLY"
Programming

Quantum
Computers

Essential Algorithms
and Code Samples /

Eric R. Johnston, Nic Harrigan
& Mercedes Gimeno-Segovia

2019-10-19 Copyright © 2019-24 Moez A. AbdelGawad

Quantum Computers are Real

 What are they useful for?

— Let’s discover, by programming them!

* A hands-on approach to programming QCs/QPUs.
— By doing; i.e., by writing code & building programs.
— Using simulators, since real QCs are harder-to-access (so far).

* Goals: Read, understand, write, and debug quantum programs.
— Ones like the following.

QFT Add one invQF T
(-90°-45°225° -90°-45° -90° Y4 Y4 90° 45° 22.5° 90° 45° 90°

\L/
N J\ J\ J

2019-10-19 Copyright © 2019-24 Moez A. AbdelGawad

PQC Outline (Tentative)

Introduction.

One Lect. (Ch. 1 & 2)

Qubits, Superposition, and One-Qubit Primitives.

Primitives.

One Lect. (Ch. 3 & 4)
Multiple Qubits and Entanglement.
A Program for Teleportation.

Libraries.

Two Lects. (Ch. 5-8)
Arith. & Logic.
Amp. Amplification, QFT & Phase Est.

Applications.

Two-Three Lects. (Ch. 9-13)

Real Data.

Search. Supersampling and QIP.

Shor’s Factoring Algorithm, Quantum ML.

Lecture Outline

 Introduction & One Qubit Primitives.
— QCEngine.

— Qubits.
* Physical, Logical. Bloch Sphere, Circle Notation.

— Primitive Qubit Operations (PrimOps).
— Simple Quantum Programes.

 Random Generators, Quantum Spy Hunter.

QCENGINE AND QUBITS

QCEngine: An Online Quantum Simulator

* https://oreilly-qc.github.io/

Learning Platform Conferences sShop

ORELLY
Pregramming

Quantum Program output @, &

Computers
’ 3 COd e Sa m pIeS (output prints here)

B 8 Johmson, b Horngan

e Segoia y

View source in Github: QCEngine / / Program circuit @ @

// Programming Quantum Computers
// by Eric Johnston, Nic Harrigan and Mercedes Gimeno-Segovia
// 0'Reilly Media

o1 s -

1
2
B
4
5 // To run this online, go to http://oreilly-qc.github.io?p=2-1
6
7 // This sample generates a single random bit.

8

9

Circle notation @, & 2 P @e @@
qc.reset(l); // allocate one qubit : :
10 qc.write(@); // write the value zero

11 qc.had(Q); // place it into superposition of @ and 1

12 wvar result = qc.read(); // read the result as a digital bit

2019-10-19 Copyright © 2019-24 Moez A. AbdelGawad

Debugging in QCEngine

0x1 > H}
0x2 >
0x4 o>—

@xB > b
(0x1 >H
Ox2 |
0x4 o
@xB > [
2019-10-19

Copyright © 2019-24 Moez A. AbdelGawad

What’s a Qubit?

 Qubit = Quantum bit.
* Physical/Concrete Qubits vs. Logical/Abstract Qubits.

* Physical Qubit: Photon, electron, ion, ...
— Needs physics knowledge.
— Imperfect (decoherence). Needs error-correction.

single-photon source half-silvered mirror
)

H0 = e
N Qs

mirror photon
detectors

What’s a Qubit?

* Logical Qubit:
— Simpler (no physics).
— ldeal (no worrying about errors).
— May correspond to more than one physical qubit.
— For programming, we use logical qubits.

* Portable quantum programs, independent of underlying hardware.

— Basic qubit values (quantum states):
* Quantum_Zero |0) and Quantum_One |1).

What's a (Logical) Qubit?

» Superposition: ¢y|0) + ¢;|1)

e Circle-notation:
— Complex numbers c, and their conjugates c*.
— Amplitude:c =a+ib = ret? (i = V—=1; a,b,7,0 are reals)
— Magnitude: r = |c| = Ve X ¢* = Va? + b2
— Phase: 8 =tan"1(b/a)
— Probability: 72 = a? + b? (square of magnitude)

792 + 112 = 1.0 (sum of probabilities)

— Relative phase (difference between phases): 8; — 6,|360°.

— Visualizing Logical Qubits:
* Bloch Sphere (Bloch Sphere Simulator, dotBloch App)
— Three free variables (degrees of freedom) rather than four, or in fact just two (Theta and Phi).

* To the rescue: Circle-notation

— Visual, simple. No physics, no (complex) numbers!

2019-10-19

och Sphere Simulator

Qubit 2
Qubit 3
Qubit 4
Qubit 5
Qubit
Qubit 7
Qubit 8
Qubit 3
Qubit 10

Alpha: |1
Beta: [g

Update Value

Display

Operator | Record/Playback | Larmor Precession | Rabi Ficld

Instructions:

Enter the four (complex) values of the operator

that you want to act upen the Qubits. You can also

dick on a button on the left side to populate popular
operators. The operator M (set below) acts upon the qubits
like Mw>

-

Aa3380

S

”xl
&

n
g

NW
2

[__#pply To visible Qubits | [Apply To All Qubits |

Copyright © 2019-24 Moez A. AbdelGawad

12

Circle-Notation

* Conventional bits, and qubits after readout.
0 1 0 1

* Qubits before readout (superposition).

00 OO0

10) 11) 10) 11)

00 ©@® O0¢

|0) 1) IO) 1) |0) 11)
0.70710) + 0.707|1) “0:707|0% =0.707|1) 0.95]0) + 0.34|1)

PRIMITIVE QUANTUM OPERATIONS
AND SIMPLE QUANTUM PROGRAMS

Primitive Quantum Operations
(PrimOps)

Read —D val gc.read(t)
Write C>— gc.write(t, wval)
No-Op _ qgc.nop ()

Not _@_ gc.not (t)

Swap (2 CIUbltS) i >< gc.exchange (t1]t2)
Hadamard (Superposition) —H gc.had (t)

Phase (deg) gc.phase (angle, t)
Root-Not —J-— gc.rootnot (t)

— Multi-qubits (2 or more).

gc.cnot (t,cl|c2)

Cond. Op. (C-Not, C-Swap, C-Phase)g qc.cnot (t, c)

Our First Quantum Program
(Hands-on: Let’s Play Online!)

write had read
(N N M)

Cqubit 1 o> H D
_/ J U

Perfect Random Bit Generator

2019-10-19 Copyright © 2019-24 Moez A. AbdelGawad 16

PrimOps: More Details

Read: Converts a superposition to black/white (measurement). Random, according to
probabilities.
— Superposition, including phase, is irreversibly destroyed (Subsequent reads return same value).

Write: Puts a definite black/white value (only |0) and |1) are allowed).
No-Op: Does nothing (“time passage”).

Not: Flips/swaps probabilities and phase. Reversible.
Swap: Exchanges states of two qubits.

Hadamard: Puts into superposition (|0) goes to perfect 50%-50% superposition, |1) goes to
same but with relative phase 180°). Reversible. (Averaging. Best understood as matrix.)

Phase: Shifts phase of |1) relative to that of |0).
— Rot-X and Rot-Y (on Bloch sphere).

Root-Not: Squared (repeated twice) gives Not.

More into math? Complex vectors, matrices, linear algebra, tensor products,

PrimOps: More Details
(using circle-notation)

0) 1) |0) 1)
. JOR 24Ol _
10)) 10) 1)

e Similarly for other primops.
— Phase: Rotates |1) (right circle) counterclockwise.
— H (Hadamard): Average and difference (matrix).
— Any questions?

* Combinations/compositions, and equivalences.

— Equiv. are basis for transformations and optimizations.
— Forexample, HoZoH =@ and Ho @ o H = 7.

No ‘Copy’ Operation

* A fundamental counterintuitive property of
QC.
— Quantum states cannot be replicated.

— Not even using entanglement. Originals are always
destroyed.

* App-specific workarounds typically employed.

A Slightly More Advanced Program

* Can you guess what does program do?

had

2
|
=
®
b,
®
oY
Q

|

NGV VA VAN VAN VAN VACY,)

VAVAVAVAVAVAYAED

g o o o e o | e

|

2019-10-19 Perfect Random Byte Generator 20

Quantum Spy Hunter

apply had read value

get two random bits set value apply had spy

r B\ r N ' N\) f N (&)
alice >[N >N 3
connection : : 4 4 D ¢
bob : i : : >HH) D
k : P O O \) ey @y
v v . . v : v
random random if A, if A, random if B, if B,=A, then
bit A, bit A, bit B, this should
match A,

* Using the amazing laws of quantum physics/computing
(e.g., no copy op.) to our advantage.

* Using 501qubits, probability of spy not getting caught is less

than :
1,000,000
— Precisely is (3/,)°°.
— Every 10 qubits divide the probability of not catching spy by
more than 10 (precisely, by 17.75. Every 5 qubits divide by 4.2).

Discussion

Q&A

Next Lecture Appetizer!

* |In next lecture:

— Multi-Qubit Operations
e Controlled Ops.
* Entanglement.

— Teleportation!

* On IBM'’s guantum computer!

Thank You

